第133章深探等差数列
在经历了梯形中位线和其他数学知识的传授与交流后,戴浩文决定在接下来的讲学中,引领学子们深入探索等差数列这个充满奥秘的数学领域。
这一日,阳光透过窗棂洒在学堂的地面上,戴浩文神色庄重地站在讲台上,看着台下一双双充满求知欲的眼睛,缓缓开口道:“诸位学子,今日我们将进一步深入探究等差数列之妙处。”
学子们纷纷挺直了腰杆,全神贯注地准备聆听戴浩文的讲解。
戴浩文在黑板上写下了一个等差数列的例子:“2,5,8,11,14……”,然后问道:“谁能说一说这个数列的公差是多少?”
一位学子立刻举手回答道:“先生,公差为3。”
戴浩文点了点头,接着问道:“那它的通项公式又该如何表示呢?”
课堂上陷入了短暂的沉默,随后一位聪明的学子站起来说道:“先生,通项公式应为an=a1+(n-1)d,在此例中,a1=2,d=3,所以通项公式为an=2+3(n-1)。”
戴浩文微笑着表示肯定:“不错。那我们来思考一下,如果已知等差数列的第m项和公差,如何求出首项呢?”
学子们纷纷拿起笔,在纸上开始计算和推导。
过了一会儿,一位学子说道:“先生,我觉得可以通过am=a1+(m-1)d这个式子变形求出首项a1。”
戴浩文鼓励道:“很好,那你具体说一说。”
学子接着道:“将式子变形为a1=am-(m-1)d,这样就可以通过第m项和公差求出首项了。”
戴浩文满意地说道:“非常正确。那我们再深入一些,若已知等差数列的前n项和Sn,以及项数n和公差d,如何求首项a1呢?”
这个问题显然更具难度,学子们陷入了深深的思考之中。
这时,一位平时就善于思考的学子站起来说道:“先生,我觉得可以先根据等差数列的前n项和公式Sn=n(a1+an)2,将an用通项公式表示出来,然后代入求解。”
戴浩文眼中露出赞赏之色:“思路很好,那你来给大家详细推导一下。”
学子走到黑板前,开始认真地推导起来:“因为an=a1+(n-1)d,所以Sn=n(a1+a1+(n-1)d)2,化简后得到Sn=n[2a1+(n-1)d]2,进一步变形可得2Sn=n(2a1+(n-1)d)