“师傅,如何应用呢?”又有学子问道。
戴浩文说道:“假设要测量一池塘两端A、B之距离,但无法直接跨越池塘。此时,可在池塘外取一点C,连接AC、BC,分别找出AC、BC之中点D、E,测量出DE之长,便可得知AB之长。”
学子们听得津津有味,纷纷感叹数学之奇妙。
“师傅,那在建筑之中,中位线是否也有用处?”一位对建筑颇感兴趣的学子问道。
戴浩文微笑着回答:“自然有用。在构建房屋框架时,若能知晓中位线之理,便可确保结构之稳固与平衡。”
这时,一位权贵子弟说道:“这些知识虽有趣,可于我等将来为官治理一方,又有何实际益处?”
戴浩文神色严肃地说道:“莫要轻视这知识。为官者,需明事理、善决策。知晓中位线之理,能助你在规划城池、分配土地等事务中做到合理布局,造福百姓。”
那权贵子弟听后,若有所思地点了点头。
戴浩文继续深入讲解:“再如,在农田灌溉的渠道设计中,利用中位线的性质,可以优化渠道的走向和长度,节省人力物力。”
学子们纷纷记录下来,生怕遗漏了重要的知识点。
“师傅,若三角形不规则,中位线的性质是否依旧适用?”又有学子提出疑问。
戴浩文回答道:“无论三角形规则与否,中位线的性质皆成立。但在实际应用中,需根据具体情况灵活运用。”
讲学持续了许久,学子们仍意犹未尽。
“今日所学,还需诸位回去后多加思考、练习。”戴浩文说道。
“谨遵师傅教诲!”学子们齐声回答。
课后,几位学子围在戴浩文身边,继续请教问题。
“师傅,我在做练习题时,总是容易混淆中位线和平行线的性质,该如何是好?”
戴浩文耐心地解答:“你需仔细分辨两者的条件和结论。中位线是连接三角形两边中点的线段,其性质与三角形相关;而平行线则是在同一平面内不相交的直线,其性质涉及角度和距离等方面。多做些题目,加以对比,自会清晰。”
另一位学子说道:“师傅,我觉得中位线的证明过程有些复杂,难以记住。”
戴浩文说道:“证明过程乃是理解性质的关键。你可尝试自己多推导几遍,理解其中的思路,而非死记硬背。”
日子一天天过去,戴浩文的学堂中总是充满着浓厚的学习