关灯 巨大 直达底部
亲,双击屏幕即可自动滚动
第167章 方程根的个数之探秘
🎁美女直播

x2+11x-6的图像,“观此图像与x轴之交点,便知方程根之个数。”

学子们盯着图像,似有所悟。

戴浩文又道:“亦有一类方程,难以直接求解,如超越方程。例如,e^x-2x-1=0。”

他解释道:“此类方程,吾等可通过函数单调性、极值等性质来推断根之个数。先求其导数,判断函数增减区间,再观其极值。”

戴浩文详细地推导着,学子们跟随着他的思路,努力理解着其中的奥妙。

时光悄然流逝,已至正午,阳光透过窗棂洒入教室,但学子们浑然未觉,沉浸于知识的海洋。

“今日所学,颇为深奥,诸位需在课后多加琢磨。”戴浩文说道。

下午课程伊始,戴浩文继续深入探讨方程根的个数问题。

他在黑板上写下一道含参数的方程:“x2+mx+1=0。”

“若此方程有实数根,求参数m之取值范围。”戴浩文抛出问题。

学子们纷纷动笔演算。戴浩文则在台下巡视,观察学子们的解题思路。

少顷,戴浩文走上讲台,开始讲解:“由判别式Δ=m2-4,若方程有实根,则Δ≥0,即m2-4≥0,解得m≥2或m≤-2。”

接着,他又给出几道类似的含参数方程,让学子们巩固所学。

“再看这道方程,”戴浩文又写下:“x3-3x+k=0,已知其有且仅有一个实根,求k的取值范围。”

学子们再次陷入沉思。戴浩文提示道:“可先求导,分析函数单调性。”

经过一番思考和讨论,学子们逐渐找到了解题的关键。

戴浩文见众人有所领悟,心中甚喜,又道:“方程根之个数问题,亦与函数之零点定理相关。若函数f(x)在区间(a,b)内连续,且f(a)与f(b)异号,则在区间(a,b)内至少存在一个零点,即方程f(x)=0在区间(a,b)内至少有一个实根。”

为让学子们更好地理解,戴浩文举例画图,详细阐述。

这章没有结束,请点击下一页继续阅读!

随后,戴浩文又列举了一些实际应用中的方程根的个数问题,如物体运动轨迹方程、桥梁受力方程等,让学子们明白方程根的个数问题在生活中的重要性。

课程接近尾声,戴浩文总结道:“方程根之个数,乃数学之重要内容,其理深邃,应用广泛。望诸君勤加研习,日后必能有所用。”