+b=-3;a=-5,b=-2时,a+b=-7。这道题要考虑到绝对值的多种可能性以及大小关系的综合判断。”
“第九题,若|x-3|<2,求x的取值范围。则-2<x-3<2,解得1<x<5。这道题是不等式与绝对值的结合,同学们要注意不等式的运算规则。”
“第十题,解方程|3x+2|=|2x-1|。当3x+2=2x-1时,x=-3;当3x+2=-(2x-1)时,3x+2=-2x+1,5x=-1,x=-15。这道题需要分情况讨论,不少同学遗漏了一种情况。”
“第十一题,若|x+1|-|x-3|=4,求x的取值范围。当x<-1时,-(x+1)-(3-x)=-4,不符合;当-1≤x<3时,x+1-(3-x)=2x-2,令2x-2=4,解得x=3,矛盾;当x≥3时,x+1-(x-3)=4,恒成立。所以x≥3。这道题难度较大,需要大家有清晰的思路和严谨的推理。”
本小章还未完,请点击下一页继续阅读后面精彩内容!
“第十二题,已知|a-1|+|b+2|+|c-3|=0,求a、b、c的值。因为绝对值都是非负的,要使它们的和为0,则每个绝对值都为0,所以a-1=0,b+2=0,c-3=0,解得a=1,b=-2,c=3。这是绝对值非负性的重要应用,做错的同学要重点复习。”
“第十三题,若关于x的方程|4x-5|=m无解,求m的取值范围。因为绝对值总是非负的,所以当m<0时,方程无解。这道题考查了绝对值方程有解与无解的条件。”
“第十四题,若|2x-3|>5,求x的取值范围。则2x-3>5或2x-3<-5,解得x>4或x<-1。这道题也是不等式与绝对值的综合,要注意解不等式时的方向。”
“第十五题,已知数轴上点A对应的数为-2,点B对应的数为x,且|x+2|=7,求A、B两点间的距离。当x+2=7时,x=5,距离为7;当x+2=-7时,x=-9,距离为7。这道题要结合数轴和绝对值的概念来求解。”
“第十六题,若|x-1|+|x-2|+|x-3|=6,求x的值。我们分情况讨论,当x<1时,1-x+2-x+3-x=6-3x=6,解得x=0;当1≤x<2时,x-1+2-x+3-x=4-x=6,x=-2,不符合;当2≤x<3时,x-1+x-2+3-x=x=6,不符合;当x≥