第226章拉格朗日乘数法
新的一天,阳光透过学堂的窗户,柔和而温暖地洒在学子们的课桌上,形成一片片斑驳的光影。戴浩文先生精神抖擞地站在讲台前,目光中充满了期待,准备带领大家开启新的数学知识篇章——拉格朗日乘数法。
“同学们,在我们不断探索数学的广袤世界时,今天我们即将涉足一个充满魅力且实用的领域——拉格朗日乘数法。”戴浩文先生的声音沉稳而有力,清晰地传遍了整个学堂。
他转身,拿起粉笔,在黑板上写下一个简单的优化问题:“求函数f(x,y)=x^2+y^2在约束条件g(x,y)=x+y-1=0下的最小值。”
学子们的目光紧紧盯着黑板上的题目,眼神中透露出好奇和思索。他们的大脑开始飞速运转,试图在已有的知识体系中找到与之相关的线索。
戴浩文先生放下粉笔,双手撑在讲台上,开始详细讲解:“首先,我们引入拉格朗日乘数λ,构建拉格朗日函数L(x,y,λ)=x^2+y^2+λ(x+y-1)。同学们,可能你们会好奇,为什么要这样构建呢?”
一位坐在前排的同学迫不及待地举起手提问:“先生,为什么要这样构建呢?”
戴浩文先生微笑着回答:“这是个很好的问题。我们这样构建的目的,是将有约束条件的优化问题转化为无约束条件的问题。通过引入这个拉格朗日乘数λ,我们能够把约束条件融合到新构建的函数中,从而使问题的解决有了新的途径。”
接着,他回过身,用粉笔指着黑板继续说道:“接下来,我们分别对x、y和λ求偏导数,并令其等于零。”
戴浩文先生在黑板上写下详细的偏导数式子:
?L?x=2x+λ=0①
?L?y=2y+λ=0②
?L?λ=x+y-1=0③
“我们来看这三个式子,先从①和②入手,同学们,你们能发现什么?”戴浩文先生用鼓励的眼神看着大家。
一位聪明的学子站起来回答:“先生,从这两个式子可以得出2x=2y,也就是说x=y。”
戴浩文先生满意地点点头:“非常好!那既然x=y,我们将其代入③中,就得到2x-1=0,那么很容易就能解得x=y=12。”
“所以,在这个约束条件下,函数f(x,y)的最小值就是12。大家明白了吗?”戴浩文先生目光扫过每一位学子。
同