《第225章对数的奇妙估算》
经过开平方数估算的学习,学子们在数学的海洋中又前进了一步。而这一日,戴浩文先生决定带领大家探索新的知识领域——对数的估算。
阳光依旧温暖地洒在学堂里,戴浩文先生站在讲台上,目光中充满了对新知识的热情。
“诸位学子,我们在数学的征途上从未停歇,今日,我们将一同走进对数的奇妙世界,学习对数的估算。”戴浩文先生的声音清晰而有力。
他转身在黑板上写下了一个对数表达式:“log?8”。
“有哪位学子能告诉大家,这个对数的值是多少?”戴浩文先生问道。
一位学子站起来回答:“先生,因为2的3次方等于8,所以log?8等于3。”
戴浩文先生微笑着点头:“很好。那如果是log?27呢?”
另一位学子迅速回答:“先生,3的3次方是27,所以log?27等于3。”
戴浩文先生再次点头表示肯定:“不错,大家对于这种简单的对数计算掌握得很好。但在实际应用中,我们常常会遇到一些不是那么容易直接得出结果的对数,这就需要我们进行估算。”
他在黑板上写下了“log?18”。
“同学们,5的平方是25,5的一次方是5,所以log?18应该在1和2之间。那如何更精确地估算呢?”戴浩文先生问道。
学子们纷纷皱起眉头,陷入思考。
戴浩文先生笑了笑,说道:“我们可以尝试用中间值来逼近。假设我们先估计log?18约为1。5,那么5的1。5次方等于√5的5次方。我们计算5的1。5次方约为11。18,小于18。再假设是1。8,5的1。8次方约为19。53,大于18。所以log?18就在1。5和1。8之间。”
学子们恍然大悟,纷纷拿起笔在纸上练习。
戴浩文先生又写下了“log?30”,然后说道:“7的平方是49,7的一次方是7,所以log?30在1和2之间。我们先假设是1。5,7的1。5次方约为18。52,小于30;假设是1。7,7的1。7次方约为27。71,小于30;假设是1。9,7的1。9次方约为37。58,大于30。所以log?30就在1。7和1。9之间。”
王强忍不住问道:“先生,每次都这样假设,有没有更简便的方法呢?”
戴浩文先生点了点